INDUCTIVE, CC-HYPERCONJUGATIVE AND FRANGOMERIC EFFECTS IN THE SOLVOLYSIS OF 6-EXO-SUBSTITUTED 2-EXO-NORBORNYL P-TOLUENESULFONATES

W. Fischer, C.A. Grob & G. von Sprecher,

Institute of Organic Chemistry, University of Basel, Switzerland.

As recently reported $\frac{1}{2}$ the inductive effect alone fails to account for polar substituent interactions in the solvolysis of saturated tri- and bicyclic halides. This applies particularly to the strained 6-exo-substituted 2-exo-nor-bornyl tosylates <u>la</u> - <u>lq</u> (Table), as the following study shows.

Hydrolysis of the tosylates $\underline{la} - \underline{lk}$ in 70 % aqueous dioxane yielded predominantly unrearranged 2-exo-R-2-exo-norbornanols $\underline{2a}$ and exo-R-norbornenes $\underline{3a}$ beside their rearranged epimers $\underline{2b}$ and $\underline{3b}$. When R was COOCH₃, COOH, COO⁻ and CONH₂, the lactone $\underline{4}$ was also formed. Furthermore, $\underline{1d}$, \underline{le} and \underline{lk} yielded substancial amounts of the corresponding nortricyclenes $\underline{5}$. In the case of \underline{la} (R = H), where the rearrangement is degenerate, 94 % of 2-exo-norbornanol were obtained in addition to 5.5 % nortricyclene and 0.5 % norbornene. In contrast, the tosylates 1ℓ - 1g underwent quantitative fragmentation to (cyclopent-3-enl-yl)-acetaldehyde 6.

Relative rate constants for the tosylates <u>la</u> - <u>lq</u>, measured in 80 vol. [§] ethanol, and the corresponding inductive substituent constants σ_{I}^{q} ² for R are listed in the following Table.

TABLE

1	R =	k _{rel} (70°C)	a_d^{I}	acceleration
a)	Н	1	0	
ь)	сн ₃	0.304	0.11	
c)	CH ₂ Br	3×10^{-3}	1.07	
d)	соосна	1.8×10^{-4}	1.69	
e)	СООН	1.7×10^{-4}	1.69	
£)	Br	4.2×10^{-6}	2.69	
g)	CN	3.5×10^{-6}	3.06	8
h)	CH2NH2	0.247	0.48	4
i)	сн ₂ он	0.167	0.62	5
j)	CONH ₂	2.1×10^{-3}	1.82	16
k)	coo	1.97	0.72	95
1)	NHCOCH	6.2×10^{-3}	1.66	22
m)	SCH ₃	9.3 $\times 10^{-3}$	1.69	39
n)	OCH ₃	8.0×10^{-3}	1.89	84
0)	ОН	1.69×10^{-2}	1.76	97
p)	NH ₂	0.628	1.08	160
q)	N(CH ₃) ₂	4.03	1.12	1200

The logarithms of the rate constants for $\underline{la} - \underline{lf}$ correlate well with the corresponding $\sigma_{\underline{I}}^{\underline{q}}$ values (Figure). Ionization is therefore controlled by the inductive effect of R and leads to normal and rearranged cations $\underline{7a} \rightleftharpoons \underline{7b}$, the precursors of the substitution, 1,2- and 1,3-elimination products ³. It is note-worthy that log k for 2-exo-norbornyl tosylate \underline{la} also fits the inductive correlation line defined by the tosylates $\underline{lb} - \underline{lf}$, some of which possess strongly

electron attracting substituents. It is therefore doubtful whether the derived cationic intermediates should be formulated as bridged species $\frac{8}{5}$, i.e. as non-classical ions ⁵.

<u>10 b</u>

<u>11</u>

Figure. Plot of log k for 6-exo-substituted 2-exonorbornyl tosylates against σ_I^q .

The eightfold rate increase shown by the nitrile <u>lg</u>, as calculated from the deviation of the point from the regression line (Figure), can be ascribed to participation of the "loosened" C(6) - endo-H bond in the transition state <u>9</u>, a view that is supported by the formation of 44 % nortricyclene <u>5</u>, R = CN.

When the potentially electrofugal groups 6 CH₂NH₂, CH₂OH, CONH₂ and COO⁻ (<u>lh</u> - <u>lk</u>) are attached to C(6) ionization occurs 4 to 95 times faster than expected on the basis of their σ_{I}^{q} values (Figure, Table). It follows that the positive charge generated at C(2) is increasingly transferred to C(6) by CC-hyperconjugation, as expressed in <u>lOa</u> and its rearranged epimer <u>lOb</u>. Finally, with strongly conjugating donor (+M) substituents at C(6), as in <u>l</u> - <u>lq</u>, accelerations of 22 - 1200 (Table) and concomitant fragmentation are observed. The concerted fragmentation mechanism ⁷ is indicated for the amines <u>lp</u> and <u>lq</u> leading to frangomeric accelerations of 120 and 1200, respectively, although a double bond is generated at an unfavorable bridgehead position in the transition state <u>l1</u>. However, a two-step pathway via hyperconjugated cations <u>8</u> is probably favored for the less reactive tosylates <u>lf</u> - <u>lo</u>.

REFERENCES

- C.A. Grob, Angewandte Chemie <u>88</u>, 621 (1976); Intern. Ed. <u>15</u>, 569 (1976);
 W. Fischer & C.A. Grob, Helv. chim. acta <u>61</u>, 1588 (1978); C.A. Grob &
 R. Rich, Tetrahedron Letters 1978, 663.
- 2) C.A. Grob & M.G. Schlageter, Helv. chim. acta 59, 264 (1976).
- Classical ions <u>7a</u> and <u>7b</u> have been postulated before in the acetolysis of the p-bromobenzenesulfonate corresponding to <u>1d</u> by G.W. Oxer & D. Wege, Tetrahedron Letters <u>1971</u>, 457.
- 4) S. Winstein & D. Trifan, J. Amer. chem. Soc. 74, 1147, 1154 (1952).
- For an extensive discussion see H.C. Brown, "The Nonclassical Ion Problem", Plenum Press, New York, 1977.
- 6) C.A. Grob & P.W. Schiess, Angewandte Chemie <u>79</u>, 1 (1967); Intern. Ed. <u>6</u>, 1 (1967).
- 7) C.A. Grob, Angewandte Chemie 81, 543 (1969); Intern. Ed. 8, 535 (1969).

(Received in UK 22 November 1978)